НАУЧНО-ТЕХНИЧЕСКИЙ ЖУРНАЛ "ВОПРОСЫ МАТЕРИАЛОВЕДЕНИЯ"

№ 3(67), 2011

СОДЕРЖАНИЕ

МЕТАЛЛОВЕДЕНИЕ. МЕТАЛЛУРГИЯ
Сагарадзе В. В., Печеркина Н. Л., Завалишин В. А., Филиппов Ю. И., Мушникова С. Ю., Калинин Г. Ю. Влияние скорости охлаждения в интервале 1100–800°С на механические свойства и структуру азотсодержащей аустенитной стали
Завалишин В. А., Сагарадзе В. В., Катаева Н. В., Калинин Г. Ю., Мушникова С. Ю. Изменение магнитных свойств азотсодержащей аустенитной стали 04X20H6Г11AM2БФ в результате низкотемпературной деформации
Добрынина М. В., Филимонов Г. Н., Павлов В. Н. Оптимизация методов регулирования структуры крупногабаритных поковок из аустенитных сталей для оборудования атомных энергетических установок
Золоторевский Н. Ю., <u>Нестерова Е. В.</u> , Васильев А. А., Титовец Ю. Ф., Хлусова Е. И. Моделирование влияния состава трубных сталей и режима термомеханической обработки на кинетику распада аустенита и структуру феррита
Гуревич Ю. Г. Теоретические и технологические основы производства карбидочугуна53
МАТЕРИАЛЫ ДЛЯ КОРПУСНЫХ КОНСТРУКЦИЙ
Светликов В. А., Куклин О. С. Предотвращение неблагоприятных структурных изменений металла при тепловой правке тонкостенного корпуса60
ФУНКЦИОНАЛЬНЫЕ МАТЕРИАЛЫ С ЗАДАННЫМИ СВОЙСТВАМИ
Дацко О. И., Абрамов В. С., Дацко И. О. Структурная память полимеризованного материала о воздействии импульсов слабого магнитного поля на его исходные компоненты69
Белошенко В. А., Дмитренко В. Ю., Чишко В. В., Михайлов В. И., Gajda D., Pięntosa J., Piechota S., Дьяконов В. П. Влияние деформационно-термической обработки с применением равноканального многоуглового прессования на силу пиннинга в многоволокнистом сверхпроводнике на основе ниобий-титанового сплава
Корнопольцев В. Н. Управление эксплуатационными характеристиками листовых металлофторо- пластовых материалов
Козлова А. В., Буякова С. П., Кульков С. Н. Структура и свойства керамики, полученной из бифракционных порошковых систем
Аюрова О. Ж., Корнопольцев В. Н., Могнонов Д. М., Максанова Л. А. Адгезия пленки политетрафторэтилена к металлическим поверхностям96
Андронов Е. В., Орыщенко А. С. Исследование газоотделения от конструкционного материала герме-тизируемого защитного костюма, используемого для работы в аргоне высокой чистоты101
НАНОРАЗМЕРНЫЕ И НАНОСТРУКТУРИРОВАННЫЕ МАТЕРИАЛЫ И ПОКРЫТИЯ
Бойко В. Ф., Власова Н. М., Зайцев А. В. Метод оценки поверхностного натяжения на примере дисперсного карбида бора107
Антоненко С. В., Малиновская О. С. Применение метода магнетронного напыления для получения углеродных нанотрубок различной формы112
Красиков А. В., Первухина М. С. Технологические особенности нанесения покрытий из коррозионно-стойких наноструктурированных сплавов никель – вольфрам методом электрохимического осаждения
КОНСТРУКТИВНО-ТЕХНОЛОГИЧЕСКАЯ ПРОЧНОСТЬ И РАБОТОСПОСОБНОСТЬ МАТЕРИАЛОВ
Пачурин Г. В., Гущин А. Н., Власов В. А. Долговечность листовых низкоуглеродистых сталей на воздухе и в коррозионной среде

Пебедев Е. Л., Рымкевич П. П. Комплексное исследование трещинообразования в алюминиевых	
сплавах в присутствии галлия. Обоснование условий контактного разупрочнения твердых	
металлов жидкими	134
Рефераты публикуемых статей	141
Авторский указатель	151
Научно-технический журнал «Вопросы материаловедения». Оформление статей. Прав	вила
ЛПЯ ARTONOR	152

РЕФЕРАТЫ ПУБЛИКУЕМЫХ СТАТЕЙ

УДК 669.15'786-194.56:539.3:621.78.08

Влияние скорости охлаждения в интервале 1100–800°С на механические свойства и структуру азотсодержащей аустенитной стали. Сагарадзе В. В., Печеркина Н. Л., Завалишин В. А., Филиппов Ю. И., Мушникова С. Ю., Калинин Г. Ю. – Вопросы материаловедения, 2011, № 3(67), с. 5–12.

Исследовано влияние скорости охлаждения (от 10^3 °C/мин при закалке в воде до 2,6 °C/мин при контролируемом охлаждении) в интервале температур 1100-800 °C на структуру и механические свойства азотсодержащей аустенитной стали $04X20H6\Gamma11AM2Б\Phi-ЭШП$ с целью определения оптимальных режимов термической обработки для сохранения высокого уровня ударной вязкости. Временное сопротивление и предел текучести образцов после охлаждения со скоростями $20,\ 10$ и $5\,^\circ$ C/мин несколько выше, чем образцов, закаленных в воде от $1100\,^\circ$ C. Относительное сужение и относительное удлинение практически не изменяются. Наиболее заметно при снижении скорости охлаждения от $20\ до\ 2,5\,^\circ$ C/мин снижается ударная вязкость — почти в $3\ раза$ (от $274\ до\ 96\ Дж/см^2$). Методами электронной микроскопии установлено, что замедление охлаждения стали $04X20H6\Gamma11AM2Б\Phi-ЭШП$ в области высоких температур приводит к более интенсивному высокотемпературному распаду γ -твердого раствора в интервале $1100-800\,^\circ$ C и росту количества приграничных нитридов в структуре.

Ключевые слова: азотсодержащая сталь, механические свойства, структура, методы электронной микроскопии, распад пересыщенных твердых растворов, нитриды.

УДК 669.15'786-194.56:539.377:537.621

Изменение магнитных свойств азотсодержащей аустенитной стали 04X20H6Г11AM2БФ в результате низкотемпературной деформации. Завалишин В. А., Сагарадзе В. В., Катаева Н. В., Калинин Г. Ю., Мушникова С. Ю. – Вопросы материаловедения, 2011, № 3(67), с. 13–18.

Холодная деформация предварительно закаленной азотсодержащей стали $04X20H6\Gamma11AM2E\Phi-ЭШП$ на 58% при $-75^{\circ}C$ и 97% при $20^{\circ}C$ не вызывает образования ферромагнитного мартенсита и не изменяет ее парамагнитных свойств. Степень деформации от 8 до 25,8% при криогенных температурах ($-196^{\circ}C$) приводит к образованию тонких пластин ϵ -мартенсита, в пределах которых формируется небольшое количество (\sim 0,20%) ферромагнитного α -мартенсита. Появление α -мартенсита деформации не приводит к снижению магнитной проницаемости стали ниже допустимого уровня.

Ключевые слова: азотсодержащая сталь, механические свойства, структура, электронномикроскопические исследования, низкотемпературная деформация.

УДК 621.039:669.15-194.56

Оптимизация методов регулирования структуры крупногабаритных поковок из аустенитных сталей для оборудования атомных энергетических установок. Добрынина М. В., Филимонов Г. Н., Павлов В. Н. – Вопросы материаловедения, 2011, № 3(67), с. 19–37.

Исследовано влияние основных технологических факторов при производстве крупных поковок для деталей АЭУ, в частности степени деформации и температуры нагрева перед деформацией на структурное состояние стали типа 08Х18Н10Т. На основании полученных результатов разработан комплекс технологических мероприятий, направленных на получение однородной мелкозернистой структуры (не крупнее балла 3 по шкале ГОСТ 5639).

Ключевые слова: оборудование атомных энергетических установок, сталь аустенитная, поковки крупногабаритные, мелкозернистая структура.

УДК 669-413: 669-418: 669.001.5

Моделирование влияния состава трубных сталей и режима термомеханической обработки на кинетику распада аустенита и структуру феррита. Золоторевский Н. Ю., <u>Нестерова Е. В.</u>,

Васильев А. А., Титовец Ю. Ф., Хлусова Е. И. – Вопросы материаловедения, 2011, № 3(67), с. 38–52.

Разработана математическая модель, описывающая кинетику формирования феррита в структуре трубных сталей и позволяющая прогнозировать структурные параметры феррита в зависимости от химического состава, особенностей структуры исходного аустенита и режима охлаждения после горячей прокатки.

Ключевые слова: трубные стали, распад аустенита, термомеханическая обработка, феррит, математическая модель.

УДК 669.13:621.762

Теоретические и технологические основы производства карбидочугуна. Гуревич Ю. Г. – Вопросы материаловедения, 2011, № 3(67), с. 53–59.

Рассмотрены основы создания технологии производства деталей из карбидочугуна. Приведены результаты термодинамического анализа взаимодействия хрома, титана и элементов основы чугуна, изложены результаты экспериментальных исследований свойств карбидочугуна в зависимости от технологических режимов и разработана технология производства деталей из карбидочугуна.

Ключевые слова: карбидочугун, порошковая металлургия, спекание, прессование.

УДК 621.039.536.2

Предотвращение неблагоприятных структурных изменений металла при тепловой правке тонкостенного корпуса. Светликов В. А., Куклин О. С. – Вопросы материаловедения, 2011, № 3(67), с. 60–68.

С целью прогнозирования структурных изменений металла при тепловой правке тонкостенного корпуса сформулированы правила замены подвижного нормально-кругового источника тепла точечными путем расчета максимальной температуры обратной поверхности корпусной обшивки.

Ключевые слова: корпус тонкостенный, тепловая правка, структурные изменения.

УДК 678.5:537.63:536.421.4

Структурная память полимеризованного материала о воздействии импульсов слабого магнитного поля на его исходные компоненты. Дацко О. И., Абрамов В. С., Дацко И. О. – Вопросы материаловедения, 2011, № 3(67), с. 69–75.

Исследованы полимеризующиеся материалы с различными исходными компонентами (две пасты, одна паста, порошок и жидкость) и различными способами отвердения (химический, световой, тепловой). Исследовано влияние воздействия на исходные компоненты полимеризующихся материалов импульсов слабого магнитного поля (ИСМП) — уровень микротвердости H_{μ} полимеризованного материала и уровень декремента затухающих колебаний Q^{-1} исходного компонента (порошка).

Установлено, что после воздействия ИСМП уровень H_{μ} и Q^{-1} изменяется. Наблюдается зависимость от режима воздействия ИСМП; экстремальное поведение; скореллированность; колебательно-затухающий характер зависимости Q^{-1} от времени. Полученные результаты свидетельствуют о том, что после воздействия ИСМП на исходные компоненты полимеризованный материал и материал исходного компонента обладают эффектом структурной памяти. Эффект возникает в материале исходного компонента и наследуется отвержденным полимеризированным материалом.

Метод воздействия ИСМП на исходные компоненты полимеризующегося материала может иметь практическое применение для дополнительного целенаправленного изменения физикомеханических свойств полимеризованного материала.

Ключевые слова: примесно-дефектные комплексы, декремент затухающих колебаний, микротвердость, слабое магнитное поле, структурная память.

УДК 669.293□'295:621.77

Влияние деформационно-термической обработки с применением равноканального многоуглового прессования на силу пиннинга в многоволокнистом сверхпроводнике на основе ниобий-титанового сплава. Белошенко В. А., Дмитренко В. Ю., Чишко В. В., Михайлов В. И.,

Gajda D., Pięntosa J., Piechota S., Дьяконов В. П. – Вопросы материаловедения, 2011, № 3(67), с. 76–80.

Исследовано влияние комбинированной деформации (равноканальное многоугловое прессование, гидроэкструзия, волочение), а также термообработки на объемный пиннинг в многоволокнистом сверхпроводнике на основе сплава Nb + 50 мас. %Ті. Выполнен качественный анализ пиннинга вихрей на структурных неоднородностях в сплаве.

Ключевые слова: сплав NbTi, многоволокнистый сверхпроводник равноканальное многоугловое прессование, сила пиннинга.

УДК 678.743-41:621.891

Управление эксплуатационными характеристиками листовых металлофторопластовых материалов. Корнопольцев В. Н. – Вопросы материаловедения, 2011, № 3(67), с. 81–88.

Рассматривается возможность управления триботехническими характеристиками листовых металлофторопластовых материалов (ЛМФМ) за счет создания на стальной подложке пористого металлокерамического бронзового слоя с заданной структурой и регулируемым объемом свободного пространства. Представлены зависимости площади, занимаемой бронзовым каркасом, от толщины рабочего слоя и ЛМФМ по мере износа рабочего слоя на глубину 0,2–0,25 мм площадь контакта бронзового каркаса с контртелом изменяется в пределах 10–15% от общей площади сопряжения. Сравнительные испытания ЛМФМ марки DU и представленного материала при ρ = 2 МПа и V > 2 м/с показали, что рабочий слой материала DU изнашивается на глубину 0,2–0,25 мм менее чем за 30 ч испытаний, тогда как новый ЛМФМ за 100 ч испытаний изнашивается на 0,01–0.015 мм.

Показана возможность увеличения концентрации наполнителя (свинца) в полимерной композиции на основе политетрафторэтилена для заполнения пористого бронзового слоя при ее спекании на воздухе под избыточным давлением за счет введения в полимерную композицию небольшой добавки диоксида свинца или углеграфитового материала (кокс, графит). Применение диоксида свинца может способствовать снижению коэффициента трения ЛМФМ по стали при высоких скоростях, а введение углеграфитового материала позволяет повысить износостойкость полимерной композиции при работе с невысокими скоростями скольжения.

Ключевые слова: листовой металлофторопластовый материал, пористый слой, политетрафторэтилен, свинец, интенсивность изнашивания, скорость скольжения, диоксид свинца, углеграфитовые материалы.

УДК 666.3:621.762

Структура и свойства керамики, полученной из бифракционных порошковых систем. Козлова А. В., Буякова С. П., Кульков С. Н. – Вопросы материаловедения, 2011, № 3(67), с. 89–95.

Исследованы фазовый состав, структура и механические свойства керамических материалов на основе высокодисперсного и грубодисперсного порошков твердых растворов диоксида циркония. При увеличении до 5% доли высокодисперсного порошка в смеси с грубодисперсным порошком, происходит уменьшение в получаемых керамиках общего объема пор и их среднего размера. Увеличение объемной доли высокодисперсной фракции в порошке от 5 до 40% сопровождается увеличением как пористости, так и среднего размера пор. В керамике, полученной из порошковых смесей, по мере увеличения до 50% количества высокодисперсной фракции уменьшается общий объем пор и их средний размер.

Ключевые слова: прочность, пористость, высокодисперсные и грубодисперсные порошки.

УДК 678.743.41:621.793

Адгезия пленки политетрафторэтилена к металлическим поверхностям. Аюрова О. Ж., Корнопольцев В. Н., Могнонов Д. М., Максанова Л. А. – Вопросы материаловедения, 2011, № 3(67), с. 96–100.

Представлены результаты исследований по определению усилий при сдвиге склеенных модифицированной и немодифицированной пленкой политетрафторэтилена металлических пластин при термообработке в плотно прижатом состоянии. Из выбранных металлов и сплавов (Al, Cт3, Cu, Лат60) наибольшее усилие (до 16–18 МПа) при сдвиге требуется для пластин из Al и стали Ст3. При предварительном химическом модифицировании пленок ПТФЭ усилие при сдвиге увеличивается, что может косвенно свидетельствовать о наличии как когезионного, так и адгезионного взаимодействия раздела фаз ПТФЭ—металл.

Ключевые слова: покрытия пленочные, поверхность металла, политетрафторэтилен, термическая обработка, усилие при сдвиге, когезионное и адгезионное взаимодействие.

УДК 687.175:677.074:620.179.13

Исследование газоотделения от конструкционного материала герметизируемого защитного костюма, используемого для работы в аргоне высокой чистоты. Андронов Е. В., Орыщенко А. С. – Вопросы материаловедения, 2011, № 3(67), с. 101–106.

При высокотемпературной обработке химически активных материалов в аргоне в обитаемых наземных камерах применяются герметизируемые защитые костюмы (ГЗК), которые предназначены для защиты персонала от действия опасного для жизни человека аргона и загрязнения аргона высокой чистоты активными примесями. Степень газоотделения от ткани марки 1108, применяемой для изготовления ГЗК, исследовали в вакууме при длительной изотермической выдержке ткани при температурах 20, 40, 60°С. Выявлены максимальные скорости отделения паров воды, диоксида углерода, оксида углерода/азота, воздуха, водорода при температуре 40° C: соответственно $4,235\cdot10^{-7}$; $7,171\cdot10^{-7}$; $16,504\cdot10^{-7}$; $50,245\cdot10^{-7}$; $98,855\cdot10^{-7}$ л·торр/с·см². Было установлено, что их состав и качественное соотношение скоростей их отделения по мере повышения температуры от 20 до 60° C сохраняются. Результаты могут быть использованы для корректировки режимов профилактики ГЗК; работы систем очистки и стабилизации температуры аргона, шлюзования операторов в камеру.

Ключевые слова: высокотемпературная обработка химически активных материалов; аргон, герметизируемые защитные костюмы, кинетика и скорость газоотделения; масс-спектрометрия; измеритель парциальных давлений.

УДК 621.762:661.665.3:532.612

Метод оценки поверхностного натяжения на примере дисперсного карбида бора. Бойко В. Ф., Власова Н. М., Зайцев А. В. – Вопросы материаловедения, 2011, № 3(67), с. 107–111.

Дана оценка энергии поверхностного натяжения дисперсного карбида бора с использованием модели процесса измельчения раздробленных материалов Риттингера. Коэффициент поверхностного натяжения определяли по результатам анализа гранулометрических характеристик измельченных порошков.

Ключевые слова: дисперсный карбид бора, поверхностное натяжение, метод оценки.

УДК 621.793

Применение метода магнетронного напыления для получения углеродных нанотрубок различной формы. Антоненко С. В., Малиновская О. С. – Вопросы материаловедения, 2011, № 3(67), с. 112–116.

Для получения X-, Y-образных углеродных нанотрубок, нанотрубок с нанопочками и в форме «морского ежа» успешно применен метод магнетронного напыления на постоянном токе. Различные формы нанотрубок достигнуты путем варьирования типа подложки и катализатора. Структурные свойства нанотрубок исследованы с помощью различных методов электронной микроскопии. Предлагаемый метод запатентован (патент 2355625 от 16.07.2007) и вошел в список 100 лучших изобретений России за 2008 год. Он позволяет получать углеродные наноструктуры с нанотрубками различной формы в необходимых количествах без использования взрывоопасных веществ (углеводородов и т.п.) и сложных установок при малых затратах. Получаемые нанотрубки применимы в наноэлектронике в качестве транзисторов, диодов и других электронных устройств.

Ключевые слова: метод магнетронного напыления, углеродные нанотрубки, методы электронной микроскопии.

УДК 669.24'27:621.793.16

Технологические особенности нанесения покрытий из коррозионно-стойких наноструктурированных сплавов никель – вольфрам методом электрохимического осаждения.

Красиков А. В., Первухина М. С. – Вопросы материаловедения, 2011, № 3(67), с. 117–124.

Исследованы закономерности получения сплава никель—вольфрам электрохимическим методом из пирофосфатного электролита с рН 9,0 при различных плотностях тока и соотношениях концентраций ионов никеля и вольфрама в растворе. Показано, что выход по току сплава с увеличением плотности тока проходит через максимум. Методом рентгеновской дифракции исследован фазовый состав сплавов Ni—W, осажденных при различных условиях. Установлено, что сплавы представляют собой нанокристаллический твердый раствор вольфрама в гранецентрированном кубическом никеле. Размер зерен сплава составляет примерно 18,5 нм. В покрытиях, осажденных при плотностях тока ниже плотности тока максимума, обнаруживается фаза примеси, не содержащая кислорода. Определены условия получения качественных покрытий сплавом Ni—W (22 мас.%) с микротвердостью 6,09—6,28 ГПа. Проведены коррозионные испытания полученного сплава в 3%-ном растворе NaCl. Скорость коррозии составила 0,01 мм/год.

Ключевые слова: коррозионно-стойкие покрытия, сплав никель – вольфрам, пирофосфатный электролит, электрохимическое осаждение.

УДК 669.15-194:620.194.8

Долговечность листовых низкоуглеродистых сталей на воздухе и в коррозионной среде. Пачурин Г. В., Гущин А. Н., Власов В. А. – Вопросы материаловедения, 2011, № 3(67), с. 125–133.

Представлены результаты усталостных и коррозионно-усталостных испытаний низкоуглеродистых сталей в зависимости от степени пластической деформации.

Ключевые слова: механические свойства, деформация, коррозионная среда, долговечность.

УДК 669.71:669.871:539.421

Комплексное исследование трещинообразования в алюминиевых сплавах в присутствии галлия. Обоснование условий контактного разупрочнения твердых металлов жидкими. Лебедев Е. Л., Рымкевич П. П. – Вопросы материаловедения, 2011, № 3(67), с. 134–140.

Исследованы причины разупрочнения алюминия и его сплавов в присутствии галлия. Основным методом исследования является оценка акустической эмиссии инициированных галлием трещин. Одновременно с акустической эмиссией был выполнен микрофрактографический анализ. Совокупность данных методов позволила выделить акустические сигналы, сопровождающие различные процессы образования трещины. Показано, что процессы диффузии галлия отличаются высокой частотой и малой амплитудой, дана оценка энергии активации этих процессов. Инициированное галлием разрушение обусловлено его проникновением в устье трещины, причем наблюдаемый диффузионный процесс не подчиняется закону Аррениуса. Предложенная «каскадная» модель проникновения галлия в устье инициируемой им трещины позволяет провести обобщение контактного взаимодействия жидких и твердых металлов. Эффект охрупчивания проявляется при выполнении условий «каскадной» диффузии, т. е. реализуется при наличии разупрочняющего металла в жидкой фазе и необходимом раскрытии устья трещины в твердом металле, которое должно обеспечить проникновение ионов жидкой фазы к неравновесным связям в устье трещины и положительную энергию смещения разноименных атомов по отношению к одноименным.

Ключевые слова: алюминиевые сплавы, галлий, охрупчивание, трещина, диффузия, контактное взаимодействие металлов.