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ВЛИЯНИЕ МОДИФИЦИРОВАНИЯ НА ПРОЦЕССЫ ФОРМИРОВАНИЯ ЗЕРНА ПОКОВОК 
ИЗ СТАЛИ МАРКИ 10Х16Н25М2Т-ВИ
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Рассмотрено влияние модифицирования редкоземельными металлами и кальцием на 

литую структуру стали марки 10Х16Н25М2Т-ВИ. Показано, что введение в сталь 
редкоземельных металлов и кальция обеспечивает получение наибольшего количества 
рекристаллизованных зерен G5 в результате проведения имитации операции осадки на 
установке Gleeble 3800 при температуре 1180°С со скоростью деформации 0,03 с–1. 
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УДК 539.411/09/2025 

ВЛИЯНИЕ ТЕМПЕРАТУРЫ ИСПЫТАНИЯ НА СОПРОТИВЛЕНИЕ ПОЛЗУЧЕСТИ
9–12%-НЫХ ХРОМИСТЫХ СТАЛЕЙ

А. Э. ФЕДОСЕЕВА, д-р техн. наук
ФГАОУ ВО «Белгородский государственный национальный исследовательский 
университет», 308015, Белгород, ул. Победы, 85. E-mail: fedoseeva@bsuedu.ru 

Поступила в редакцию 18.08.2025
После доработки 11.09.2025

Принята к публикации 15.09.2025
Высокохромистые стали мартенситного класса выступают перспективным материалом 

для изготовления элементов энергоблоков тепловых электростанций, способных работать 
при суперсверхкритических параметрах пара (температура 600–620°С, давление 25–30 МПа). 
Для оценки характеристик длительной прочности таких материалов требуются достаточно 
продолжительные испытания, временные рамки которых могут достигать нескольких 
десятков лет. В настоящем исследовании поднимается вопрос о целесообразности и 
допустимости повышения температуры испытаний на ползучесть в лабораторных 
исследованиях для адекватного прогнозирования длительных свойств при более низких 
температурах на примере 12%-ной хромистой стали с низким содержанием азота и высоким 
содержанием бора. Оценка допустимости повышения температуры испытания до 675°С 
исходила из постулата о сохранении механизма деформации при ползучести, механизма 
разрушения и закономерностей эволюции структуры и фазового состава по сравнению с 
результатами испытаний при более низкой температуре (650°С). Анализ полученных данных 
выявил, что при повышении температуры испытания до 675°С основной механизм 
деформации при ползучести – высокотемпературное переползание дислокаций посредством 
объемной диффузии – и внутризеренный вязкий механизм разрушения сохраняются, как при 
650°С, несмотря на появление переломов на кривых длительной прочности. Анализ 
микроструктуры после испытаний на ползучесть также показал, что основные температурно-

временные зависимости роста ширины реек и среднего размера частиц вторичных фаз могут 
быть описаны кривыми с одинаковыми коэффициентами для различных температур 
испытания. Следовательно, температуру 675°С можно рекомендовать для ускорения 
лабораторных испытаний на ползучесть высокохромистых сталей. 

Ключевые слова: высокохромистые стали, ползучесть, возврат, укрупнение частиц, 
разрушение 
DOI: 10.22349/1994-6716-2025-124-4-19-30 
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Исследована структура листового проката из хладостойких судостроительных сталей 
повышенной и высокой прочности, широко востребованных для строительства морской 
техники арктического применения, в первую очередь мощных атомных ледоколов. Для 
исследования структуры использованы современные методики количественной оценки 
параметров структуры с помощью оптической металлографии, дифракции обратно 
рассеянных электронов (EBSD-анализа) и просвечивающей электронной микроскопии. 
Показаны основные структурные особенности, оказывающие влияние на характеристики 
работоспособности листового проката в зависимости от уровня прочности и технологии 
производства. Установлена взаимосвязь хладостойкости и трещиностойкости со структурой 
листового проката больших толщин из судостроительных сталей различных уровней 
прочности. 

Ключевые слова: хладостойкая судостроительная сталь, характеристики 
работоспособности, хладостойкость, трещиностойкость, температура Ткб, температура NDT, 
критическое раскрытие вершины трещины CTOD, структура, размер структурного элемента. 
DOI: 10.22349/1994-6716-2025-124-4-31-52 
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СТРУКТУРА И СВОЙСТВА ИНТЕРФЕЙСА СИСТЕМЫ ПЛАЗМЕННОЕ ПОКРЫТИЕ –
ПОДЛОЖКА НА ПРИМЕРЕ БЫСТРОРЕЖУЩЕЙ МОЛИБДЕНОВОЙ 

И СРЕДНЕУГЛЕРОДИСТОЙ СТАЛИ 
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Методами современного физического материаловедения проведены исследования 

структурно-фазового состояния и элементного состава переходной зоны контакта системы 
плазменное покрытие (быстрорежущая молибденовая сталь) – подложка 
(среднеуглеродистая сталь). Установлено, что переходный слой толщиной ≈100 мкм 
содержит α-фазу, γ-фазу, карбиды сложного состава Me23C6, Me6C, а также MoC и цементит. 
Структура переходного слоя представлена пакетным и пластинчатым мартенситом, 
прослойками аустенита и наноразмерными частицами цементита. Зона контакта покрытие –
подложка не содержит микропор и микротрещин. Нанотвердость и модуль Юнга плавно 
изменяются при удалении от покрытия и подложки, формируя демпфирующий слой вдоль 
поверхности контакта, что позволяет говорить о высокой работоспособности системы 
плазменная наплавка – подложка.

Ключевые слова: быстрорежущая молибденовая сталь, плазменный метод, система 
покрытие – подложка, интерфейс, структура, фазовый состав, свойства
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Объектом исследования является изучение влияния температуры отжига на 

механические свойства сплава Ti49,0Ni51,0 в крупнозернистом и ультрамелкозернистом (УМЗ-

1 и УМЗ-2) состояниях. В ходе исследования были выявлены зависимости влияния исходной 
структуры сплава Ti49,0Ni51,0 и структуры сформировавшейся в процессе старения в широком 
диапазоне температур, на механические характеристики сплава. Были проведены 
исследования с целью изучения зависимости свойств от вида обработки. Были исследованы 
микроструктура с помощью оптической и просвечивающей микроскопии, механические
свойства, а также проведен фрактографический анализ. Установлено, что температура 
отжига в значительной степени влияет на механические характеристики сплава Ti49,0Ni51,0. 

При проведении отжига в диапазоне температур старения и при более высоких температурах 
наблюдается снижение предела прочности и повышение пластичности. Проведение 
интенсивной пластической деформации методом равноканального углового прессования 
позволило достичь высоких значений предела прочности и предела текучести без снижения 
пластичности.

Ключевые слова: TiNi, функциональные свойства, механические свойства, отжиг, 
микроструктура, интенсивная пластическая деформация
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СПЛАВЕ ПТ-7М ПРИ ИЗГОТОВЛЕНИИ ТРУБНЫХ ЗАГОТОВОК МЕТОДОМ ГОРЯЧЕГО 

ВЫДАВЛИВАНИЯ С ПОСЛЕДУЮЩЕЙ ХОЛОДНОЙ РАДИАЛЬНОЙ КОВКОЙ
П. С. КРЫЛОВ1, В. П. ЛЕОНОВ1, д-р техн. наук, Л. П. РТИЩЕВА1, Д. О. ХЛОБЫСТОВ2,  

Н. А. ЛАПИНА2, М. В. ЛУКИН2, Д. А. НЕГОДИН2 

1 НИЦ «Курчатовский институт» – ЦНИИ КМ «Прометей», 191015, Санкт-Петербург, 
ул. Шпалерная, 49. E-mail: pavelkril@mail.ru 

2 АО «Чепецкий механический завод», 427622, г. Глазов, ул. Белова, д. 7. 
E-mail: dokhlobystov@rosatom.ru 

Поступила в редакцию 31.07.2025
После доработки 6.10.2025

Принята к публикации 24.10.2025
Исследовано влияние интенсивной пластической деформации при выдавливании 

титанового сплава ПТ-7М с последующей холодной радиальной ковкой на формирование 
структуры материала. Определены оптимальные режимы термической обработки для 
формирования регламентированной мелкозернис­той структуры в материале. Показано, что 
радиальная ковка горячепрессованной заготовки позволяет сформировать однородную 
мелкозернистую заготовку.

Ключевые слова: титановые сплавы, интенсивная пластическая деформация, 
радиальная ковка, термическая обработка, мелкозернистая структура
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Представлены экспериментальные образцы из титановых сплавов, полученные 

методами проволочной электронно-лучевой и электродуговой аддитивных технологий. 

Кратко описаны некоторые методы управления процессом для контроля дефектов с точки 
зрения факторов, влияющих на динамику ванны расплава, включая контроль термических 
условий процесса во время 3D-печати. В рамках исследования проведен комплексный
анализ результатов получения образцов для определения наиболее оптимального метода с 
точки зрения бездефектности, достижения подходящей структуры и оптимальных 
механических свойств образцов на основе титановых сплавов. Скорость изготовления 
образцов ЭДАП (электродуговое аддитивное производство) и средние значения 
механических свойств образцов ЭДАП почти в 1,5 раза выше, чем образцов ЭЛАП 
(электронно-лучевое аддитивное производство), однако боковая поверхность образцов 
ЭЛАП имеет более плоскую поверхность. Практическая значимость заключается в 
определении предпочтительного способа эффективного производства и повышения 
конкурентоспособности изделий на основе титановых сплавов.

Ключевые слова: аддитивное производство, проволочная электронно-лучевая 
аддитивная технология, электродуговая аддитивная технология, титан, макроструктура, 
механические свойства, тепло­вложение, стратегия печати
DOI: 10.22349/1994-6716-2025-124-4-81-91 

Исследование выполнено за счет гранта Российского научного фонда № 25-19-20142 

(URL: https://rscf.ru/project/25-19-20142/) и гранта в форме субсидии, выделяемого 
Департаментом по научно-технологическому развитию и инновационной деятельности 
Томской области (Соглашение № 02/5/2025).

ЛИТЕРАТУРА
1. Афонин В. К., Ермаков Б. С., Лебедев Е. Л., Пряхин Е. И., Самойлов Н. С., Солнцев
Ю. П., Шипша В. Г. Металлы и сплавы: справочник. – СПб.: Профессионал, 2003. – 1090 с.
2. Чечулин Б. Б.  Титановые сплавы в машиностроении. – Л.: Машиностроение, 1977. – 248 

с.



© 2025 

НИЦ «Курчатовский институт» – ЦНИИ КМ «Прометей» 

http://www.crism-prometey.ru 

Научно-технический журнал 

«Вопросы материаловедения» 

 

3. Никитина Е. В., Фролов В. А., Степанов В. В., Предко П. Ю. Исследование структурной 
и химической неоднородности при сварке различных групп металлических материалов // 
Сварочное производство. – 2013. – № 10. – С. 4–9. 

4. Патон Б. Е. Технология электрической сварки металлов и сплавов плавлением. – М.: 
Машиностроение, 1974. – 767 с. 
5. Fuchs J., Schneider C., Enzinger N. Wire-based additive manufacturing using an electron 

beam as heat source // Weld World. – 2018. – V. 62. – P. 267–275. DOI: 10.1007/s40194-017-0537-

7 

6. Review of the wire arc additive manufacturing of metals: properties, defects and quality 

improvement / B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu et al. // J. Manuf. Process. – 2018. 

– V. 35. – P. 127–139. DOI: 10.1016/j.jmapro.2018.08.001 

7. Gaspar B. Microstructural Characterization of Ti–6Al–4V and Its Relationship to Sample 

Geometry. – San Luis Obispo, CA, USA: Materials Engineering Department, Cal Poly, 2012. – 22 

p. 

8. Donachie M. J. Titanium: A Technical Guide. – Materials Park, OH, USA: ASM International, 

2000. 

9. Rafi H. K., Karthik N. V., Gong H., Starr T. L., Stucker B. E. Microstructure and Mechanical 

Properties of Ti6Al4V Parts Fabrication by Selective Laser Melting and Electron Beam Melting // J. 

Mater. Eng. Perform. – 2013. – V. 22. – P. 3872–3883. 

10. Collins, P.  Brice D., Samimi P., Ghamarian I., Fraser H. Microstructural control of 

additively manufactured metallic materials // Annu. Rev. Mater. Res. – 2016. – V. 46. – P. 63–91. 

11. Mapping the geometry of Ti–6Al–4V: From martensite decomposition to localized 

spheroidization during selective laser melting / P. Barriobero-Vila, K. Artzt, A. Stark, N. Schell, 

M. Siggel, J. Gussone et al. // Scr. Mater. – 2020. – V. 182. – P. 48–52. 

12. Effect of heat input on phase content, crystalline lattice parameter, and residual strain in wire-

feed electron beam additive manufactured 304 stainless steel / S. Y. Tarasov, A. V. Filippov, 

N. L. Savchenko, S. V. Fortuna, V. E. Rubtsov, E. A. Kolubaev et al. // Int. J. Adv. Manuf. 

Technol. – 2018. – V. 99. – P. 2353–2363. DOI: 10.1007/s00170-018-2643-0 

13. Wang X.,  Gong X.,  Chou K. Scanning speed effect on mechanical properties of Ti–6Al–
4V alloy processed by electron beam additive manufacturing // Procedia Manuf. – 2015. – V. 1. – P. 

287–295. DOI: 10.1016/j.promfg.2015.09.026 

14. Wittenburg K. Specific instrumentation and diagnostics for high-intensity hadron beams // 

CERN Yellow Reports. – 2009. – P. 511–568. DOI: 10.5170/CERN-2013-001.251 

15. Gu D., Meiners W., Wissenbach K., Poprawe R.  Laser additive manufacturing of 

metallic components: Materials, processes and mechanisms // Int. Mater. Rev. – 2012. – V. 62, Is. 

3. – P. 159–207. DOI: 10.1179/1743280411Y.0000000014 

16. Zadpoor A. A.  Additively manufactured metallic porous biomaterials // J. Mater. Chem. B. 

– 2019. – V. 7. – P. 4088–4117. DOI: 10.1039/C9TB00420C 

17. A design of experiment approach for development of electron beam powder bed fusion 

process parameters and improvement of Ti–6Al–4V as-built properties / D. Braun, Y. I. Ganor, S. 

Samuha, G. M. Guttmann, M. Chonin, N. Frage et al. // J. Manuf. Mater. Process. – 2022. – V. 

6, N 4. – P. 90. DOI: 10.3390/jmmp6040090 



© 2025 

НИЦ «Курчатовский институт» – ЦНИИ КМ «Прометей»
http://www.crism-prometey.ru 

Научно-технический журнал
«Вопросы материаловедения»

18. Sames W. J., List F. A., Dehoff R. R., Zhang C., Lowe -Ma L. E. The metallurgy 

and processing science of metal additive manufacturing // Int. Mater. Rev. – 2016. – V. 61. – P. 315–
360. DOI: 10.1080/09506608.2015.1116649 

19. Materials for additive manufacturing / D. Bourell, J.P. Kruth, M. Leu, T. Nakagawa, 

B. Rosen, M. C. Seepersad et al. // CIRP Ann. – 2017. – V. 66. – P. 659–681. DOI: 

10.1016/j.cirp.2017.05.005 

20. Additive manufacturing of metallic components – Process, structure and properties / T. Deb 

Roy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W.  Elmer, J. O. Milewski et al. // Prog. Mater. 

Sci. – 2018. – V. 92. – P. 112–224. DOI: 10.1016/j.pmatsci.2017.10.001 

21. Study on powder particle behavior in powder spreading with discrete element method and its 

critical implications for binder jetting additive manufacturing processes / S. Wu, Y. Yang, Y. Huang, 

C. Han, J. Chen, Y. Xiao et al. // Virtual Phys. Prototyp. – 2023. – V. 18, Is. 1. – P. 1–26. DOI: 

10.1080/17452759.2022.2158877 

22. Materials for additive manufacturing / D. Bourell, J. P. Kruth, M. Leu, G. Levy, D. 

Rosen, A. M. Beese et al. // CIRP Ann. – 2017. – V. 66. – P. 659–681. DOI: 

10.1016/j.cirp.2017.05.009 

23. Pinkerton A. J., Li L. Direct Additive Laser Manufacturing Using Gas and Water-Atomised 

H13 Tool Steel Powders // Int. J. Adv. Manuf. Technol. – 2005. – V. 25. – P. 471–479.  

24. Hebert R. J. Metallurgical Aspects of Powder Bed Metal Additive Manufacturing // J. Mater. 

Sci. – 2016. – V. 51. – P. 1165–1175. 

25. Manufacturing of Ti–Al–Zr–Mo–V Alloy Components by Additive Methods / V.

Semenchuk,  A.  Nikolaeva, et al.  // Russian Physics Journal. – 2024. – N 66 (11). – P. 1180–
1188. 

УДК 669.018.45:621.78:538.945

ТВЕРДОСТЬ И МИКРОСТРУКТУРА СПЛАВОВ НИОБИЯ, ЛЕГИРОВАННЫХ ТАНТАЛОМ, 
ИТТРИЕМ, ГАФНИЕМ И ЦИРКОНИЕМ, В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ ОТЖИГА

К. В. ЗОЛОДУЕВ1, М. В. КРАВЦОВА1, А. С. ЦАПЛЕВА1, канд. техн. наук, Н. В. 
КОНОВАЛОВА1, К. О. БАЗАЛЕЕВА2, канд. физ.-мат. наук, М. В. ЖЕЛЕЗНЫЙ2, Ю. Ю. 

ПОНКРАТОВА2 

1 АО «Высокотехнологический научно-исследовательский институт неорганических 
материалов им. академика А.А. Бочвара (AO «ВНИИНМ»), 123098, Москва. E-mail: 

kvzoloduev@bochvar.ru 
2 ФГАОУ ВО «Российский университет дружбы народов им. Патриса Лумумбы», 

117198, Москва, ул. Миклухо-Маклая, 6. E-mail: bazaleeva-ko@rudn.ru 

Поступила в редакцию 14.08.2025
После доработки 26.09.2025

Принята к публикации 1.10.2025
Представлены результаты исследования микроструктуры, твердости, фазового состава 
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1200°C при длительности 1 ч. Изучены сплавы с различным химическим составом: Nb–
7,5%Ta–1%Hf, Nb–7,5%T–1%Zr и Nb–7,5%Ta–0,2%Zr–0,003%Y. Полученные данные 
позволяют оптимизировать режимы термической обработки сплавов для достижения 
требуемых механических свойств, а также для улучшения технологичности производства 
сверхпроводящих материалов на основе Nb₃Sn. 

Ключевые слова: ниобиевые сплавы, легирование, рекристаллизация, микроструктура, 
твердость, термообработка, сверхпроводник
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Цеолиты представляют интерес как наполнители полимеров и строительных 
материалов, так как они обладают высокой термической, химической и механической 
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стойкостью. Кроме того, эти алюмосиликаты имеют развитую удельную поверхность с 
большим количеством активных центров. Мезопористая структура исследуемых нами 
цеолитов характеризуется относительно широким и мономодальным распределением пор по 
размерам с максимумом в диапазоне 10–14 нм, что свидетельствует о неоднородности 
мезопор этих алюмосиликатов. На основе анализа изотерм низкотемпературной адсорбции –
десорбции азота установлено, что пористость вулканического цеолита растет с уменьшением 
размера его частиц. Общий объем пор в активированном цеолите практически в два раза 
больше, чем в вулканическом, независимо от размера их частиц. Это обусловлено различием 
их фазового состава, так как основным компонентом активированного цеолита является 
кальцит, а вулканического – клиноптилолит.

Ключевые слова: вулканические и активированные цеолиты, пористость, кривые 
сорбции – десорбции, петля гистерезиса, размер частиц
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Представлен комплексный подход к отбору углеродных кремнийсодержащих электродов 

для использования их в составе суперконденсаторов. С привлечением методов 
спектроскопии комбинационного рассеяния света, теории функционала плотности и анализа 
пористости исследованы структурные характеристики материалов электродов, 
синтезированных методом электрохимического осаждения. Предложены подходы, 
основанные на выявленных взаимосвязях между структурными и функциональными 
характеристиками, позволяющие осуществлять первичный отбор электродов. 
Эффективность методики подтверждена сравнением функциональных характеристик 
отобранных электродов с имеющимися аналогами. Показано, что электроды, отобранные с 
помощью разработанной методики, превосходят аналоги по значениям емкости и ее 
сохранению при наименьшем времени разряда.

Ключевые слова: пористые электроды, углеродные кремнийсодержащие материалы, 
стабильность, методика отбора, суперконденсаторы
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Приведены результаты испытаний слоистых алюмостеклопластиков на стойкость к 

ударным нагрузкам. Рассмотрены методики сравнительных испытаний на удар, приведена 
оценка сопротивления удару различных композиций слоистых алюмостеклопластиков 
марки СИАЛ, изучено влияние ряда структурных факторов на сопротивление удару с 
микроанализом характера разрушения. Проведенные исследования позволили определить 
критерии оценки поведения алюмостеклопластиков при ударных воздействиях, а именно: 
энергии удара при повреждениях различной степени, остаточной прочности, механических 
свойств, характера повреждений и вида изломов при микроструктурном анализе.
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Полифениленсульфид (ПФС) находит все большее распространение благодаря своим 
уникальным физико-химическим и термическим свойствам в совокупности с невысокой 
стоимостью и возможностью применения в 3D-печати. Создание композиций на основе ПФС 
это хороший способ получить высокий уровень свойств напечатанных изделий. В настоящей 
работе были получены филаменты на основе ПФС и изучены свойства напечатанных ими 
изделий. Методом экструзии были получены филаменты десяти разных составов, 
содержащие стекловолокно, кварцевую муку или их комбинации. Филаментами напечатаны 
образцы для испытаний на растяжение, ударную вязкость по Изоду без надреза и 
температуру изгиба под нагрузкой. На основании результатов испытаний выбрана наиболее 
оптимальная рецептура филамента, а также проанализированы свойства филаментов других 
составов. 

Ключевые слова: полифениленсульфид, стекловолокно, кварцевая мука, FDM-печать, 
композит, филамент, механические свойства 
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Исследована совместимость аппретирующих композиций на основе полиамидокислот 
различного строения с суперконструкционными полимерами: полифениленсульфидом 
(ПФС) и полисульфоном (ПСФ). Адгезионная прочность в композитах на основе 
аппретированного волокна и ПФС, аппретированного волокна и ПСФ была определена 
экспериментально при помощи метода pull-out (вытягивание волокна из блока матрицы). 
Результаты испытаний показали, что экспериментальные образцы сопоставимы по 
прочности с композитами, полученными на основе волокна, обработанного коммерчески 
доступными аппретирующими составами. Максимальное значение адгезионной 
(межфазной) прочности при сдвиге (IFSS) составило 103,8 МПа для матрицы ПФС и 87,6 МПа 
для матрицы ПСФ.

Ключевые слова: углеродное волокно, аппретирующие композиции, 
полифениленсульфид, полисульфон, суперконструкционные термопласты, композиты на 
основе непрерывного углеродного волокна
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ВЛИЯНИЕ СВЕРХЭЛЕКТРОПРОВОДНОГО ТЕХНИЧЕСКОГО УГЛЕРОДА НА СТРУКТУРУ 
И СВОЙСТВА КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ ПОЛИЭТИЛЕНА 

ВЫСОКОЙ ПЛОТНОСТИ 

Е. А. ДРОЗДОВА, Е. А. РОГАЧЕВ, канд. техн. наук, О. В. КРОПОТИН, д-р техн. наук 

ФГАОУ ВО «Омский государственный технический университет», 644050, Омск, 
пр. Мира, 11. E-mail: kropotin@mail.ru 

Поступила в редакцию 14.05.2025 

После доработки 14.07.2025 

Принята к публикации 16.07.2025 

Исследовано влияние сверхэлектропроводного технического углерода СН1000 на 
структуру и свойства полимерных композиционных материалов на основе полиэтилена 
высокой плотности HD 03490 PE. Выявлено два типа структуры, определяющие свойства 
композитов. Первый тип формируется в малонаполненном композите: наполнитель образует 
слабопроводящую сеть и в то же время армирует композиты, повышая их жесткость. Второй 
тип формируется при повышенном содержании наполнителя: образуются 
электропроводящие армирующие композит цепочки из контактирующих между собой частиц 
наполнителя. Критическая концентрация наполнителя в композите, определяющая переход 
от первого типа структуры ко второму, соответствует 8–10 мас.% технического углерода.  

Ключевые слова: электропроводные полимерные композиты, технический углерод, 
полиэтилен высокой плотности, электропроводность, механические свойства 
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Строительные конструкции из полимерных композиционных материалов (ПКМ) уже 
нашли свое применение в строящихся объектах в зоне умеренного климата и все чаще 
используются при строительстве зданий и сооружений в зонах многолетнемерзлых грунтов 
(ММГ) Канады, США и ряда других стран. Однако почти полностью отсутствует информация 
о сохраняемости структуры и свойств ПКМ в условиях экстремально низких температур, 
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высокой агрессивности внешней среды и добываемых продуктов. В Российской Федерации 
отсутствует нормативно-техническая документация по условиям применения ПКМ в зоне 
холодного климата, что не позволяет рекомендовать ПКМ при обустройстве нефтегазовых 
месторождений в зоне ММГ. В настоящей работе приведены результаты комплексных 
исследований по оценке деградации структуры и свойств базальтопластиков и изделий из 
них в условиях Арктического и Субарктического регионов РФ и по разработке справочной 
базы данных о свойствах ПКМ при длительной эксплуатации в условиях холодного климата.

Ключевые слова: полимерные композиционные материалы, деградация материала, 
ресурс материала, климатические испытания, климатические факторы старения, 
базальтопластики
DOI: 10.22349/1994-6716-2025-124-4-176-187 
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Методом селективного лазерного сплавления (СЛС) изготовлены образцы из 

нержавеющих сталей AISI 321 и AISI 316L. Проведены испытания образцов в исходном 
состоянии и после термической обработки, выполненной по режимам: СЛС + аустенитизация; 
СЛС + провоцирующий нагрев; СЛС + аустенитизация + провоцирующий нагрев, на 
межкристаллитную коррозию по ГОСТ 6032–2017 (метод АМУ). Установлено, что стойкость к 
межкристаллитной коррозии (МКК) образцов из исследуемых нержавеющих сталей 
обеспечивает аустенитизация. При остальных режимах в зависимости от содержания 
углерода и элемента-стабилизатора (титана), а также от структуры металла, 
сформированной в процессе СЛС и термической обработки, образцы могут проявлять 
склонность к МКК.

Ключевые слова: аустенитные стали, селективное лазерное сплавление, 
межкристаллитная коррозия, аустенитизация 
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Принята к публикации 17.09.2025 

Проведены экспериментальные исследования по определению трещиностойкости и 
скорости роста усталостной трещины в облученной аустенитной стали марки 08Х18Н10Т 
после эксплуатации в составе ВКУ ВВЭР-440 в течение 45 лет. Исследован металл трепанов 
из этой стали, вырезанных из выгородки реактора, имеющий повреждающую дозу от 14,4 до 
43,0 сна. 

Испытания по определению трещиностойкости проведены в диапазоне температур от –
100 до 300°C, а испытания по определению скорости роста усталостной трещины – в 
диапазоне от 20 до 300°C. Определены зависимости трещиностойкости и скорости роста 

усталостной трещины от температуры испытаний и повреждающей дозы. Обнаружено, что 
резкое снижение трещиностойкости и повышение скорости роста усталостной трещины 
происходит при переходе от классического вязкого или усталостного разрушения к 
смешанному характеру разрушения, включающему межзеренное. Выявлена роль 
мартенситного превращения при испытании образцов и генерации гелия в стали при ее 
облучении в реакторе ВВЭР. Эта роль проявляется в реализации межзеренного разрушения 
при температурах испытаний, когда реализуется мартенситное превращение в сочетании с 
ослабленными границами зерен гелием. Предложена качественная модель, объясняющая 
полученные результаты. 

Ключевые слова: аустенитная сталь, облучение, трещиностойкость, скорость роста 
усталостной трещины, мартенситное превращение, межзеренное разрушение 
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Abstract—High-chromium martensitic steels are promising materials for the manufacture of 

power unit components for thermal power plants capable of operating at ultra-supercritical steam 

parameters (temperature 600–620°C, pressure 25–30 MPa). At the same time, to assess the long-

term strength characteristics of such materials, sufficiently long tests are required, the time frame of 

which can reach several decades. This study raises the issue of the feasibility and admissibility of 

increasing the creep test temperature in laboratory studies for adequate prediction of long-term 

creep properties at lower temperatures using the example of 12% Cr steel with the low nitrogen 

content and high boron content. The assessment of the admissibility of increasing the test 

temperature to 675°C was based on the postulate of maintaining the creep deformation mechanism, 
the fracture mechanism and the patterns of structure and phase composition evolution compared to 

a lower temperature of 650°C. The analysis of the obtained data revealed that with an increase in 
the test temperature to 675°C, the main mechanism of creep deformation, such as high-temperature 

dislocation climb via volume diffusion, and the intragranular ductile fracture mechanism are 

preserved, as at 650°C, even despite the occurrence of creep strength breakdown. The analysis of 
microstructures after creep tests also showed that the main temperature-time dependences of the 

growth of the lath width and the average particle size of secondary phase particles can be described 

by curves with the same coefficients for different test temperatures. Thus, the temperature of 675°C 
can be recommended for accelerating laboratory creep tests for high-chromium steels. 

Keywords: high-chromium steels, creep, recovery, dispersion hardening, particle coarsening, 

fracture 
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Abstract—The structure of sheet metal products made of high-strength, cold-resistant shipbuilding 

steels, widely used for the construction of Arctic marine equipment, primarily powerful nuclear-

powered icebreakers, is presented. Modern methods for quantitatively assessing structural 

parameters using optical metallography, electron backscatter diffraction (EBSD), and transmission 

electron microscopy (TEM) are used to study the structure. The main structural features that 

influence the performance characteristics of sheet metal products are demonstrated, depending on 

the strength level and production technology. The relationship between cold resistance and crack 

resistance with the structure of thick sheet metal products made of shipbuilding steels of various 

strength levels is established. 

Keywords: cold-resistant shipbuilding steel, performance characteristics, cold resistance, crack 

resistance, Tkb temperature, NDT temperature, critical crack tip opening (CTOD), structure, and 

structural element size. 
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Abstract––The methods of modern physical materials science were used to study the 

structural/phase state and elemental composition of the transition zone of the contact of the 

plasma coating (high-speed molybdenum steel) and substrate (medium carbon steel) system. The 

transition layer with a thickness of ≈100 μm contains the α-phase, γ-phase, complex carbides 

Me23C6, Me6C, as well as MoC and cementite. The structure of the transition layer is represented 
by packet and lamellar martensite, austenite interlayers and nanosized cementite particles. The 

coating/substrate contact zone does not contain micropores and microcracks. Nanohardness and 

Young’s modulus change smoothly with distance from the coating and substrate, forming a damping 
layer along the contact surface, which allows us to speak about the high performance of the plasma 

surfacing/substrate system.  

Keywords: high-speed molybdenum steel, plasma method, coating/substrate system, interface, 

structure, phase composition, properties 
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Abstract––The object of this study is the investigation of the effect of annealing temperature on the 

mechanical and functional properties of the Ti49.0Ni51.0 alloy in coarse-grained (CG), ultrafine-

grained-1 (UFG-1), and ultrafine-grained-2 (UFG-2) states. The study identifies dependencies of the 

influence of the initial structure of the Ti49.0Ni51.0 alloy and the structure formed during aging over a 

wide temperature range on the mechanical characteristics of the alloy. Research was carried out to 

study changes in properties that depend on the type of treatment. The microstructure was examined 

by optical and transmission microscopy, mechanical properties were tested, and fractographic 

analysis was performed. It has been established that annealing temperature significantly affects the 

mechanical characteristics of the Ti49.0Ni51.0 alloy. Annealing in the aging temperature range and at 

higher temperatures results in a decrease in tensile strength and an increase in ductility. Severe 

plastic deformation using equal channel angular pressing (ECAP) enabled high tensile strength and 

yield strength to be achieved without reducing ductility. 

Keywords: TiNi, functional properties, mechanical properties, annealing, microstructure, 

intensive plastic deformation 
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Abstract—The paper studies effects of intense plastic deformation during extrusion of titanium alloy 

PT-7M followed by cold radial forging on the formation of the material structure. Optimal modes of 

thermal treatment for formation of regulated fine-grained structure in material are determined. It is shown 

that radial forging of hot-pressed blank makes it possible to form homogeneous fine-grained blank. 
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Abstract—The paper presents experimental samples of titanium alloys fabricated using wire-

based electron beam and wire arc additive manufacturing techniques. Some process control 

methods for defect control were briefly described focusing on factors influencing melt pool dynamics, 

including control of thermal conditions during 3D printing. A comprehensive analysis of the obtained 

samples is carried out to determine the most optimal method in terms of defect-free performance, 

achieving a suitable structure and optimal mechanical properties of titanium alloy-based samples. 

The specimens WAAM (Wire Arc Additive Manufacturing) exhibit a deposition rate and average 

mechanical properties approximately 1.5 times higher than those of specimens EBAM (Electron 

Beam Additive Manufacturing), although the specimens EBAM demonstrate smoother lateral 

surfaces. The practical significance lies in identifying the most effective manufacturing approach to 

enhance the competitiveness of titanium alloy-based products. 

Keywords: additive manufacturing, wire-feed electron beam additive technology, wire arc 

additive technology, titanium alloy, macrostructure, mechanical properties, heat input, deposition 

strategy 
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Abstract—The article presents the results of the study of the microstructure, hardness, and X-ray 

diffraction characteristics of niobium alloys alloyed with tantalum (Ta), hafnium (Hf), zirconium (Zr), 

and yttrium (Y) after heat treatment in the temperature range from 500°C to 1200°C for a duration 
of 1 hour. Alloys withvarious chemical compositions have been studied: 7.5%Ta–1%Hf, Nb–7.5%Ta–
1%Zr and Nb–7.5%Ta–0.2%Zr–0.003%Y. The data obtained make it possible to optimize the heat 

treatment modes of alloys to achieve the required mechanical properties. It will also improve the 
manufacturability of NB3SN-based superconducting materials. 
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Abstract—Zeolites are of interest as fillers for polymers and building materials due to their high 

thermal, chemical, and mechanical stability. Furthermore, these aluminosilicates have a large 

specific surface area with a large number of active sites. The mesoporous structure of the zeolites 
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studied here is characterized by a relatively broad and monomodal pore size distribution with a 

maximum in the 10–14 nm range, indicating the heterogeneity of the mesopores of these 

aluminosilicates. Based on an analysis of low-temperature nitrogen adsorption/desorption 

isotherms, it was found that the porosity of the volcanic zeolite increases with decreasing particle 

size. The total pore volume in the activated zeolite is almost twice that of the volcanic zeolite, 

regardless of particle size. This is due to the difference in their phase composition, as the main 

component of the activated zeolite is calcite, while that of the volcanic zeolite is clinoptilolite. 

Keywords: volcanic and activated zeolites, porosity, sorption-desorption curves, hysteresis 

loop, particle size 
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Abstract—Using surface-selective laser sintering, samples of biocompatible and bioresorbable 

polylactide microparticles with varying moisture contents were fabricated: lyophilized, untreated, 

with a wetted surface, and with a chitosan hydrophilic coating. The surface morphology of the 

resulting polymer structures was studied. Sintering was performed by laser with a wavelength of λ 
= 1.96 μm and an energy density of 6–22 J/cm2. Increasing the energy density resulted in increased 

layer thickness, increased sintering, and decreased porosity. Chitosan-coated microparticles 

sintered at 22 J/cm2 demonstrated the best results in terms of stability for tissue engineering. 

Keywords: laser sintering, surface-selective laser sintering, heat sensitizer, polylactide, water 

content 
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Abstract––The paper presents a comprehensive approach to selecting carbon-silicon electrodes 

for use in supercapacitors. Using Raman spectroscopy, density functional theory, and porosity 

analysis, the structural characteristics of electrode materials synthesized by electrochemical 

deposition are studied. Approaches based on the identified relationships between structural and 

functional characteristics are proposed for the initial selection of electrodes. The effectiveness of the 

method is confirmed by comparing the functional characteristics of the selected electrodes with 

existing analogs. It is shown that electrodes selected using the developed method outperform their 

analogs in terms of capacitance values and capacity retention with the shortest discharge time. 
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Abstract—The results of impact resistance tests on laminated aluminum-fiberglass reinforced 

plastics are presented. Methods for comparative impact testing are examined, the impact resistance 

of various composites of SIAL-grade aluminum-fiberglass reinforced plastics is assessed, and the 

influence of several structural factors on impact resistance is studied, along with a microanalysis of 

the fracture pattern. The conducted research allowed us to define criteria for assessing the behavior 
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of aluminum-fiberglass reinforced plastics under impact, namely: impact energy for varying degrees 

of damage, residual strength, mechanical properties, damage pattern, and fracture pattern during 

microstructural analysis. 

Keywords: SIAL, impact resistance, aluminum-fiberglass, GLARE, microstructure, impact 

damage 
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Abstract—Polyphenylene sulfide (PPS) becomes more widespread due to its unique 

physicochemical and thermal properties, combined with its low cost and the ability to be used in 3D-

printing. The creation of PPS-based compositions is a good way to obtain a high level of printed 

article properties. In this work, PPS-based filaments were obtained and the properties of the 

products printed by them were studied. Ten different filaments containing glass fibers, quartz flour 

or combinations thereof were prepared by extrusion. Filaments are printed for tensile tests, Izod 

impact strength without notch and bending temperature under load. Based on the test results, 
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the most optimal filament formulation was selected, as well as the properties of filaments of other 

compositions were analyzed. 

Keywords: polyphenylene sulfide, glass fiber, quartz flour, FDM-printing, composition, 

filament, mechanical properties 
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Abstract—The compatibility of finishing composites based on polyamide acids of various structures 

with superstructural polymers, polyphenylene sulfide (PPS) and polysulfone (PSF), was studied. 

The adhesion strength of composites based on finished fiber and PPS, and finished fiber and PSF, 

was determined experimentally using the pull-out method. Test results showed that the experimental 

samples were comparable in strength to composites obtained from fiber treated with commercially 

available finishing compounds. The maximum adhesion (interfacial) shear strength was 103.8 MPa 

for the PPS matrix and 87.6 MPa for the PSF matrix. 
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Abstract—For the first time, the influence of superconductive carbon black CH1000 on the structure 

and properties of a polymer composite materials based on high-density polyethylene HD 03490 PE 

has been studied. Two types of structure have been identified as determining the properties of 

composites. The first type of structure is formed in a low-filled composite. The filler forms a weakly 

conductive network and at the same time reinforces the composites, increasing their rigidity. The 

second type of structure is formed with an increased filler content: electrically conductive and 

composite-reinforcing chains of filler particles in contact with each other are formed. The critical 

concentration of filler in the composite, which determines the transition from the first type of structure 

to the second, corresponds to 8–10 wt.% of carbon black. 

Keywords: conductive polymer composites, carbon black, high-density polyethylene, electrical 

conductivity, mechanical properties 
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Abstract—Building structures made of PCM have already found their application in construction 

projects in the temperate climate zone and are increasingly used in the construction of buildings and 

structures in the permafrost of Canada, the USA and a number of other countries. However, to date, 

there is almost no information on the preservation of the structure and properties of PCM under 

conditions of extremely low temperatures, high aggressiveness of the external environment and 

extracted products, in addition, in the Russian Federation there is no regulatory and technical 

documentation on the conditions of using PCM in the cold climate zone, which does not allow 

recommending PCM for the development of oil and gas fields in the permafrost. In this paper, a set 

of studies is carried out aimed at assessing the degradation of the structure and properties of basalt 

plastics and products made from them in the conditions of the Arctic and Subarctic regions of the 

Russian Federation and the development of a reference database on the properties of PCM under 

long-term operation in cold climates. 

Keywords: PCM, material degradation, material resource, climatic tests, climatic factors of 

aging, basalt plastic 
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INVESTIGATION OF INTERCRYSTALLINE CORROSION RESISTANCE OF SPECIMENS OF 

STAINLESS AUSTENITIC STEELS OBTAINED BY SELECTIVE LASER ALLOYING AFTER 

VARIOUS HEAT TREATMENT MODES 
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Abstract—Samples of stainless steels AISI 321 and AISI 316L were made by selective laser 

alloying (SLS). Samples were tested in the initial state and after heat treatment performed according 

to the following modes: SLS + austenitization; SLS + provoking heating; SLS + austenitization + 

provoking heating, for intercrystalline corrosion according to national standard GOST 6032-2017 

(AMU method). It has been established that the intercrystalline corrosion resistance of samples from 

the studied stainless steels provides austenitization. In other modes, depending on the content of 

carbon and the stabilizer element (titanium), as well as on the metal structure formed during the SLS 

and thermal treatment, the samples may show a tendency to intercrystalline corrosion. 

Keywords: austenitic steels, selective laser fusion, intercrystalline corrosion, austenitization 
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Abstract—The fracture toughness and fatigue tests of specimens from austenitic stainless steel of 

18Cr–10Ni–Ti grade (Russian analog of AISI 321 steel) irradiated during 45 years as a part of the 

core baffle in the Pressure Water Reactor of WWER-440 type were performed. Specimens had a 

various neutron damage doses from 14.4 to 43.0 dpa. The fracture toughness tests were performed 



 

© 2025 

NRC “Kurchatov Institute” – CRISM “Prometey” 

http://www.crism-prometey.ru 

Scientific and Technical Journal 

“Voprosy Materialovedeniya” 

 

over a temperature range from –100 to 290°C. The fatigue crack growth rate (FCGR) tests were 
determined over a temperature range from 20 to 290°C. The temperature and dose dependences 
of fracture toughness and FCGR are constructed. It was found that a drastic decrease of fracture 

toughness and an increase of FCGR occurs at the transition from classical ductile mechanism or 

fatigue fracture mechanism to a mixed fracture mechanism (including intergranular fracture). The 

role of martensitic transformation during specimens testing and generating helium in steel during 

irradiation in a WWER reactor has been revealed. This role is manifested in the intergranular fracture 

at test temperatures when the martensitic transformation is realized in combination with the helium 

weakening of grain boundaries. A phenomenological model explaining the results is proposed. 

Keywords: austenitic steel, irradiation, fracture toughness, fatigue crack growth rate, 

martensitic transformation, intergranular fracture 
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